Embedding Ladders and Caterpillars into

نویسندگان

  • L. Bezrukov
  • B. Monien
  • W. Unger
چکیده

We present embeddings of generalized ladders as subgraphs into the hypercube. By embedding caterpillars into ladders, we obtain embeddings of caterpillars into the hypercube. In this way we obtain almost all known results concerning the em-beddings of caterpillars into the hypercube. In addition we construct embeddings for some new types of caterpillars.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Embedding ladders and caterpillars into the hypercube

We present embeddings of generalized ladders as subgraphs into the hypercube. By embedding caterpillars into ladders, we obtain embeddings of caterpillars into the hypercube. In this way we obtain almost all known results concerning the embeddings of caterpillars into the hypercube. In addition we construct embeddings for some new types of caterpillars.

متن کامل

Exact Wirelength of Embedding the Hypercubes into Cycle-of-ladders

Hypercubes are a very popular model for parallel computation because of their regularity and the relatively small number of interprocessor connections. In this paper, we present an algorithm to compute the exact wirelength of embedding the hypercubes into cycle-of-ladders and prove its correctness.

متن کامل

Embedding hypercubes into cylinders, snakes and caterpillars for minimizing wirelength

We consider the problem of embedding hypercubes into cylinders to minimize the wirelength. Further we show that the edge isoperimetric problem solves the wirelength problem of regular graphs and in particular hypercubes into triangular snakes and caterpillars.

متن کامل

Total Embedding Distributions of Circular Ladders

where ai is the number of embeddings, for i = 0, 1, . . ., into the orientable surface Si, and bj is the number of embeddings, for j = 1, 2, . . ., into the non-orientable surface Nj . The sequence {ai(G)|i ≥ 0} ⋃ {bj(G)|j ≥ 1} is called the total embedding distribution of the graph G; it is known for relatively few classes of graphs, compared to the genus distribution {ai(G)|i ≥ 0}. The circul...

متن کامل

Total embedding distributions of Ringel ladders

The total embedding distributions of a graph is consisted of the orientable embeddings and nonorientable embeddings and have been know for few classes of graphs. The genus distribution of Ringel ladders is determined in [Discrete Mathematics 216 (2000) 235-252] by E.H. Tesar. In this paper, the explicit formula for non-orientable embeddings of Ringel ladders is obtained.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997